

Learning Teaching Training Activity

16.01.2024, Groningen

"Innovative professional development approaches for the development of skills needed for public engagement in science"

Athanasia Kokolaki, Emily Michailidi, Eleni Botzaki & Dimitris Stavrou

STAGE is a project funded by the Erasmus+ Programme of the European Union. Grant agreement n. 2021-2-NL01-KA220-HED-000048944

SCIENTISTS' PROFESSIONAL DEVELOPMENT TRAINING ON SCIENCE COMMUNICATION & PUBLIC ENGAGEMENT

WHY?

Contemporary socioscientific issues

Debates among scientists

Debates among societal actors

Misinformation through public media

Need for public evaluation of the credibility of the scientific information & trust in science

Important the role of scientists
No official training

(Osborne & Pimentel, 2023; Roche et al., 2023; Wan & Bi, 2020; Baram-Tsabari & Lewenstein, 2017a)

Audience - centered communication

(Baram-Tsabari & Lewenstein, 2017a)

Audience - centered communication

Deficit model vs. public engagement

(Baram-Tsabari & Lewenstein, 2017a)

Audience - centered communication

Deficit model vs. public engagement

Co-production of science and society, making values a fundamental part of science

Audience - centered communication

Deficit model vs. public engagement

Co-production of science and society, making values a fundamental part of science

Trust

(Baram-Tsabari & Lewenstein, 2017a)

LEARNING GOALS OF A SCIENCE COMMUNICATION TRAINING

□ Affective

□ Content Knowledge

□ Methods

□ Reflection

□ Participation

Identity

(Baram-Tsabari & Lewenstein, 2017b)

LEARNING GOALS OF A SCIENCE COMMUNICATION TRAINING

GOALS	
Affective	Values science communication & public engagement Values varied perspectives among different stakeholders about science and society Recognizes usefulness of science communication for career & institutional goals
Content knowledge	Recognizes multiple goals of science communication Knows the opportunities, resources, affordances, and constraints of different science communication environments (journalism, social media, museums, citizen science etc.) Pays attention to science communication theory, goals and processes Knows that good science communication requires multiple kinds of knowledge (scientific knowledge, benefits & risks of science, social aspects of science etc.)
Methods	Knows how to connect with audiences Develop messages suitable for specific audiences Has media skills Has public speaking skills

(Baram-Tsabari & Lewenstein, 2017b)

LEARNING GOALS OF A SCIENCE COMMUNICATION TRAINING

Reflection	Knows something of the history, philosophy and social context of science Knows aspects of the nature of the scientific knowledge Is self - reflective about his/her own practice of science communication Shares experiences with other science communicators for the purpose of learning
Participation	Increases involvement in science communication events Practices one's skills in authentic science communication in a variety of environments Becomes a member of a network of science communicators
ldentity	Feels confident and able to engage Identifies one's self as a science communicator Includes "science communication" as a fundamental component of what it means to be a scientist Is perceived by others to be a science communicator

STAGE

PROFESSIONAL DEVELOPMENT TRAINING PROGRAM

ASPECTS OF STAGE TRAINING

ASPECTS

- 1. Effective science communication practices (oral and writing)
- 2. Social, ethical & cultural dimensions of climate change
- 3. Public's misconceptions about climate change Public's distrust towards science
- 4. The role of public engagement in scientists' career
- 5. Sustainability issues

STAGE PD MATERIALS

ASPECTS	TEAM	
Effective science communication practices (oral and writing)	RUG	
Social, ethical & cultural dimensions of climate change	UNIBO / USB	
Public's misconceptions about climate change - Public's distrust towards science	UOC	
The role of public engagement in scientists' career	CARDET	
Sustainability issues	RUG	

LEARNING GOALS	FREQUENCY		
Affective	8		
Content knowledge	6		
Method	9		
Reflection	8		
Participation	3		
Identity	2		

LEARNING GOALS	FREQUENCY
Affective	8
Content knowledge	6
Method	9
Reflection	8
Participation	3
Identity	2

LEARNING GOALS	FREQUENCY
Affective	8
Content knowledge	6
Method	9
Reflection	8
Participation	3
Identity	2

LEARNING GOALS	FREQUENCY
Affective	8
Content knowledge	6
Method	9
Reflection	8
Participation	3
Identity	2

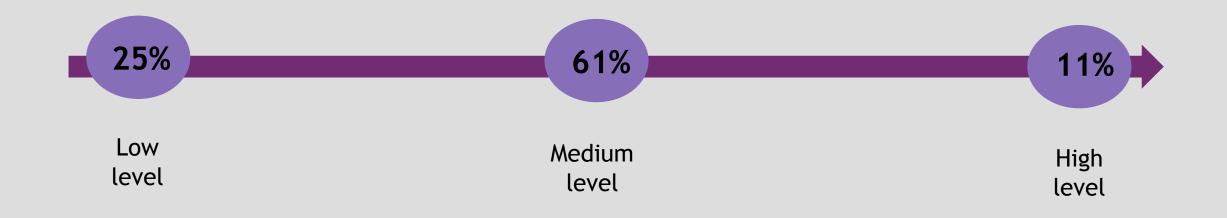
TYPE OF ACTIVITIES OF THE STAGE TRAINING

TYPE OF ACTIVITIES	FREQUENCY
Case studies	2
Concept mapping/ Reflection	3
Debate	1
Group discussion	10
Lecture	3
Planned reading	8
Role play	2
Story telling	1
Brainstorming	2
Workshop	6

TOOLS OF THE STAGE TRAINING

TOOLS	FREQUENCY
Assignment	3
Forum	1
Papers	5
Videos	4
Whiteboards (e.g. padlets, jamboards)	4
Word cloud	1
Presentation	2
Infographics	8
Toolkit	14

TOOLS OF THE STAGE TRAINING

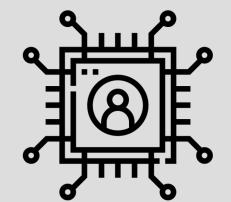

TOOLS	FREQUENCY
Assignment	3
Forum	1
Papers	5
Videos	4
Whiteboards (e.g. padlets, jamboards)	4
Word cloud	1
Presentation	2
Infographics	8
Toolkit	14

THE CASE OF UOC MATERIALS

TRUST IN SCIENCE

"Whenever people are dependent on agents (persons, organizations) and whenever they are willing to accept the risks that come along with this dependency, they put trust into these agents (the trustees)"

LEVEL OF PUBLIC TRUST IN SCIENCE



(Wellcome Global Monitor, Gallup, 2019)

FACTORS CAUSING DISTRUST TOWARDS SCIENCE

Scientific Literacy

Sociocultural Background

(e.g. low income)

徇

Political beliefs

Religion beliefs

FOSTERING TRUST IN SCIENCE

Organize authentic outreach activities by implementing authentic scientific methods

Promote contact with scientists

Promote work with real data

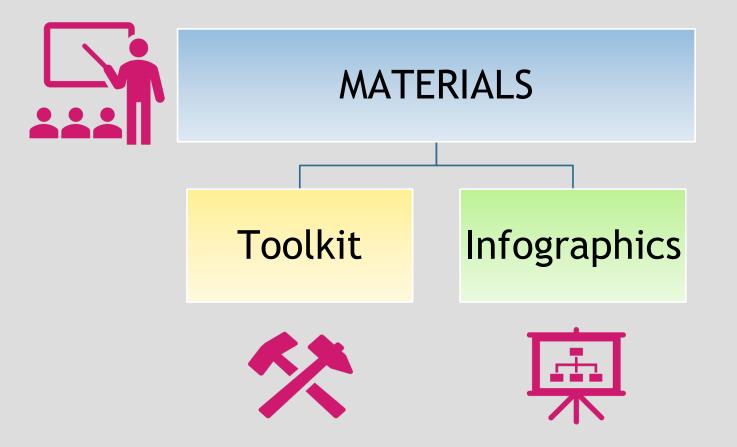
Discuss uncertainty

(Osborne & Pimentel, 2023; Hendriks, 2016; Krüger et al., 2022)

FOSTERING TRUST IN SCIENCE

Organize authentic outreach activities by implementing authentic scientific methods

Promote contact with scientists


Promote work with real data

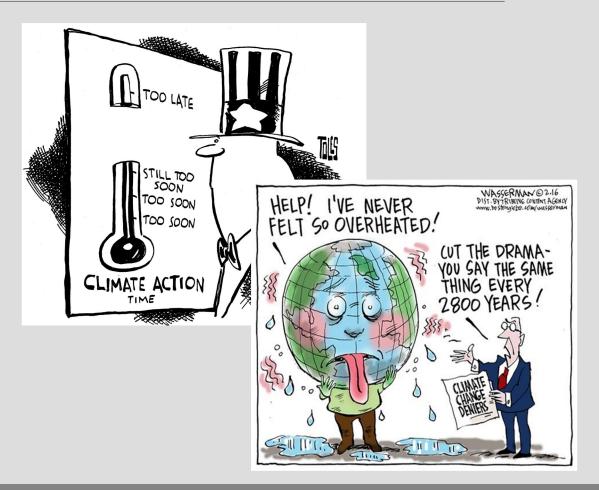
Discuss uncertainty

- Scientific methods & practices
- Norms and values that scientists employ in their work
- How scientists engage in professional settings
- The social mechanisms through which scientists review, evaluate, and validate scientific knowledge
- How science is arranged in institutional settings
- The underlying financial and political dimensions of science
- The inherent uncertainty of science in-the-making by dismissing the idealized and unrealistic image of an absolutely certain science.

(Osborne & Pimentel, 2023; Hendriks, 2016; Krüger et al., 2022)

DESIGN & DEVELOPMENT OF UOC MATERIALS

STRUCTURE OF THE MATERIALS


PARTS	Content - Description
Part 1	Misinformation regarding climate change - The role of media
Faiti	Debunking fake news / misconceptions about climate change
	Public's distrust towards science
Part 2	The value of entrusting science
	What can be done to increase public's trust in science
Part 3	Implications for science communication activities & practices

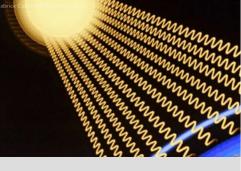
ACTIVITIES

- 1. Common misinformation regarding climate change
- 2. Analysis of public media resources
- 3. Practices for debunking of misinformation
- 4. Negotiation of the social aspects of science
- 5. Redesign of current science communication activities for fostering public trust in science

ACTIVITY 1: Common misinformation regarding climate change

- 1. Comics
- 2. Participants discuss in their groups the misinformation conveyed by the comics

Follow


ACTIVITY 2: Analysis of public media resources

- 1. Participants analyze online articles and social media posts that convey misinformation on CC
- 2. Participants discuss in their groups and come to a conclusion regarding the features of misinformation (e.g. use of emotional language, highlighting scientific uncertainty etc.).

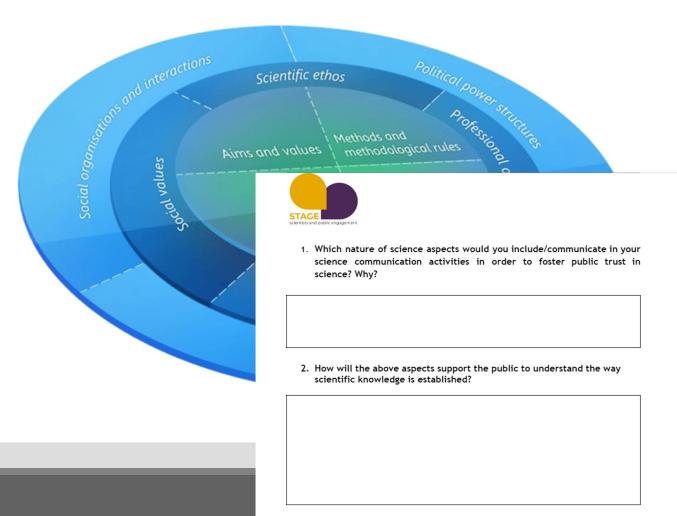
Donald J. Trump 🤜

@realDonaldTrump

FEATURE	Post 1	Post 2	Post 3	Headline 1	Headline 2
"Continued influence effect"					
Sense of familiarity by repeated info ("Illusory truth effect")					
Use of emotional language					
Use of "just asking questions" strategy					
Questioning scientific consensus					
Highlighting scientific uncertainty					
Undermining scientists' credibility					
Provision of pseudoscientific alternatives					

ACTIVITY 3: Practices for debunking of misinformation

- 1. Participants get familiar with a common practice for debunking misinformation during their science communication activities
- 2. Participants implement this practice in order to develop a refutation on a specific misinformation regarding climate change


 Discuss with your group and develop a refutation regarding the following misinformation:

"Climate has always changed naturally in the past, therefore modern climate change must also be natural".

ACTIVITY 4: Negotiation of the social aspects of science

- Initially, participants discuss and brainstorm on the skills public should be equipped with in order to respond to current socioscientific issues
- 2. Participants get familiar with the social aspects of science (based on the social aspects of science provided through Family resemblance approach framewor
- 3. Participants discuss in groups the social aspects of science they consider import for fostering public trust in science

ACTIVITY 5: Re - design of current science communication practice

1. Participants are called to describe they way they would change the features of the current science communication activities in order to foster public's trust in science Are you likely to apply the science communication concepts & techniques you * learned in your future research and outreach efforts? (1 = Not at all, 5= extremely likely)

O Yes

O No

If yes, how do you plan to apply such concepts & techniques in your future research and outreach efforts?

Η απάντησή σας

How do you plan to re - design your current outreach activities (e.g. during researcher's night) in order to include aspects you experienced during your training?

Η απάντησή σας

PARTICIPANTS

20 researchers

University institutions

Research centers

Science centers

IMLPEMENTATION

Mode	Duration	Content
Asynchronously	1 h	Planned reading & Infographics
Synchronously	2 h	Analysis of common misinformation & public media resources
Asynchronously	1 h	Planned reading & Infographics
Synchronously	2 h	Practices of debunking misinformation & Negotiation of social aspects of science
Asynchronously	2 h	Redesign of science communication activities

DATA COLLECTION

Initial open questionnaire on their current science communication practices (before the implementation)

Responses in the worksheets

Final open questionnaire regarding the re-design of their current practices

CATEGORIZATION

CATEGORIES	CRITERIA
Social aspects of science	Professional activities
	Social certification and dissemination
Cognitive & epistemic aspects of science	Aims and values
	• Methods
	Authentic scientific practices
	Use of real data
Evaluation of information & sources	Check the credibility of the source
	Check the expertise of the source
Use of interactive materials	Video, animations, images etc.

PRELIMINARY RESULTS

SCIENCE COMMUNICATION PRACTICES

BEFORE THE IMPLEMENTATION

- School visits
- Participation in STEM education research projects
- Participation in the "Researcher's night" outreach activities
- Public talks

SUGGESTIONS FOR RE-DESIGNING THE CURRENT PRACTICES

CATEGORIES	FREQUENCY
Social aspects of science	8
Cognitive & epistemic aspects of science	11
Evaluation of information & resources	5
Use of interactive materials	12

SUGGESTIONS FOR RE-DESIGNING THE CURRENT PRACTICES

CATEGORIES	FREQUENCY
Social aspects of science	8
Cognitive & epistemic aspects of science	11
Evaluation of information & resources	5
Use of interactive materials	12

SUGGESTIONS FOR RE-DESIGNING THE CURRENT PRACTICES

CATEGORIES	FREQUENCY
Social aspects of science	8
Cognitive & epistemic aspects of science	11
Evaluation of information & resources	5
Use of interactive materials	12

FIRST INSIGHTS

Activities for the dissemination of their research findings

(Tillinghast et al., 2020)

FIRST INSIGHTS

Activities for the dissemination of their research findings

(Tillinghast et al., 2020)

Enrichment of the current activities with aspects of the nature of science

Time for discussion!

REFERENCES

- Baram-Tsabari, A., & Lewenstein, B. V. (2017a). Science communication training: What are we trying to teach? International Journal of Science Education, Part B, 7(3), 285-300.
- Bryman, A. (2017). Μέθοδοι κοινωνικής έρευνας. Gutenberg.
- Dillon, J., & Avraamidou, L. (2020). Towards a viable response to COVID-19 from the science education community. Journal for Activist Science and Technology Education, 11(2), 1-6
- Erduran, S., & Dagher, Z. R. (2014). *Reconceptualizing nature of science for science education* (pp. 1-18). Springer Netherlands.
- Fleming, W., Hayes, A. L., Crosman, K. M., & Bostrom, A. (2021). Indiscriminate, irrelevant, and sometimes wrong: Causal misconceptions about climate change. *Risk analysis*, 41(1), 157-178.
- Hendriks, F., Kienhues, D., & Bromme, R. (2016b). Trust in science and the science of trust. In B. Blöbaum (Ed.), Trust and Communication in a digitized world (pp. 143-159). Springer International Publishing.
- Koswatta, T. J., Parrella, J. A., Leggette, H. R., Ramasubramanian, S., & Rutherford, T. (2022). Improving public science communication: a case study of scientists' needs when communicating beyond the academy. *International Journal of Science Education, Part B*, 12(2), 174-191.
- Krüger, J. T., Höffler, T. N., & Parchmann, I. (2022). Trust in science and scientists among secondary school students in two out-of-School learning activities. International Journal of Science Education, Part B, 12(2), 111-125.
- Leiserowitz, A., Maibach, E., Roser-Renouf, C. & Smith, N. (2011). Global Warming's Six Americas, May 2011. Yale University and George Mason University. New Haven, CT: Yale Project on Climate Change Communication.

REFERENCES

- Mukherji, A., Thorne, P., Cheung, W. W. L., Connors, S. L., Garschagen, M., Geden, O., ... & Yassaa, N. (2023). Synthesis Report Of The IPCC Sixth Assessment Report (AR6). United Nations.
- Osborne, J. et al,. (2022). Science Education in an Age of Misinformation. Stanford University, Stanford, CA.
- Tillinghast, R. C., Appel, D. C., Winsor, C., & Mansouri, M. (2020, August). STEM outreach: A literature review and definition. In 2020 IEEE Integrated STEM Education Conference (ISEC) (pp. 1-20). IEEE.
- Whitmarsh, L., O'Neill, S., & Lorenzoni, I. (2013). Public engagement with climate change: What do we know and where do we go from here? International Journal of Media & Cultural Politics, 9(1), 7-25.

Thank you!